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1. Introduction

Space-like branes or S-branes [1] are fascinating objects in string theory. They are defined

as a kind of topological defects localized on a space-like hypersurface, and hence can only

exist for ‘moment’ in time. The rolling of the open string tachyon on an unstable D-brane

(for a review see [2] and references therein) namely the decaying branes to the closed string

vacuum in some cases can be considered as an array of Dirichlet S-branes in imaginary time

[3]. In general S-branes can also be viewed as the time-dependent homogeneous solutions

in string theory or in supergravity, localized in a given instant of time. They have been

very useful in understanding cosmological applications of string theory.

Dirichlet S-branes are also obtained by imposing a Dirichlet condition on the time like

coordinate of the open strings [4]. Under T-duality along a transverse spatial direction

the S-branes are shown to be T-dual to the D-branes with overcritical electric field. It

was further observed that unlike the D-branes, in the first quantization of the open string

between a pair of S-branes, there are only a finite number of physical states that increases

when they gets separated with time. In general S-brane solutions in the type-II string

theory can be obtained by analytically continuing the usual D-brane boundary states, but

one has to keep in mind that it radiates the Ramond-Ramond field with wrong reality

property. In other words one can have a S-brane with real R-R charge, but then it won’t

be a solution of type-II theories rather its existence can be predicted in II* theory. Further

it was shown that the generic S-brane configurations should decay into a bunch of D-branes

(or brane-anti-brane pairs).

D-branes in the Anti-de Sitter backgrounds have been studied by various authors in the

past by using various techniques, see for example ([5]–[15]). String theory on the SL(2,R)

and its discrete orbifolds have shed new light in the conjectured AdS/CFT duality. The
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corresponding target space geometry is AdS3 supported by NS-NS three-form flux. D-

branes in this background has been considered in the past. In [5], it was shown that

the dS2-branes in AdS3 are unphysical due to the presence of overcritical electric field.

So it is tempting to examine the behavior of these unphysical D-branes in the T-dual

background in the light of [4]. We address this question in this paper. In doing so, what

we achieve is the following. First of all we are able to find a physical interpretation of the

unphysical solutions with imaginary electric flux etc as in the T-dual picture the S0-brane

that arises from the time dependent tachyon condensation on unstable D1-brane. Second,

the previously found unphysical solutions correspond, in fact, to perfect and acceptable

solutions in string theory (even if the initial configurations of tachyon that corresponds to

S-brane have to be fine tuned) since they arise from the open string tachyon condensation.

The rest of the paper is organized as follows. In section 2 we try to spell out some

properties of the Anti-de Sitter D-branes and show the unphysicalness of the dS2-branes

in AdS3. In section 3, we apply T -duality along one of the symmetry directions, and

interpret the solution that can be seen as D0-brane moving along that particular direction.

We find out the equation of motion for the dynamical variable for the later comparison

with the S0-branes. In section 4, we study the time dependent tachyon condensation on

the unstable D-brane and found out the signature of the S(p − 1) branes. In fact, we

found that the dynamics of the kink is governed by the equations of motion that arise from

the S-brane effective action in given background 1. We further analyze the properties of

energy-momentum tensor derived from such DBI action. The main result of this analysis is

the fact that the singular time dependent tachyon condensation on an unstable Dp-brane

leads to the emergence of the object whose equations of motion arises from the action that

can be interpreted as S(p-1)-brane with imaginary tension (in other words, it couples to

imaginary NS-NS modes) and with real charge with respect to Ramond-Ramond fields.

This is equivalent to the analysis performed in [4] where this kind of Sp-branes was named

as S−p-brane 2. Then we apply this general procedure in section 5 to find out the S0-brane

equations of motion that resembles with that of the D-brane in the dual background.

Finally in section 6, we present our conclusions.

2. D-branes with overcritical electric fields and emerging S-branes

In this section we study the properties of the D-branes with overcritical electric fields. Let

us begin with the AdS3 × S3 metric in global coordinates:

ds2 = L2
[

− cosh2 ρdt2 + dρ2 + sinh2 ρdθ2
1

]

+ L2
[

dθ2 + cosh2 θdψ̃2 + sin2 θdθ2
2

]

(2.1)

1S-brane action was also studied in [16 – 19].
2It is necessary to mention one important subtlety considering our results and the work [4]. It was argued

there that the S−p-brane should contain open string tachyon in its world volume theory. Unfortunately

using effective field theory description performed below we are not be able to find the evidence for the

existence of this tachyon. It is of course possible that more general ansatz for fluctuations around the time

dependent tachyon solution of the non-BPS Dp-brane world volume theory will contain in its spectrum a

tachyonic mode. We hope to return to this problem in future.
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supported by the Neveu-Schwarz three-form field

H = dB = L2 sinh(2ρ)dρ ∧ dθ1 ∧ dt ,B = L2 sinh2 ρdθ1 ∧ dt . (2.2)

Let us consider the D1-brane in the above background with the DBI action

S = −τ1

∫

d2ξe−Φ
√
− detA , (2.3)

with

Aµν = gMN∂µXM∂νXN + bMN∂µXM∂νX
N + (2πα′)(∂µAν − ∂νAµ) , (2.4)

where Dp-brane tension is equal to

τp =
1

(2π)
(p−1)

2 (2πα′)
p+1
2

, (2.5)

XM ,M = 0, . . . , 9 label the position of D1-brane, gMN , bMN are background metric and
NS-NS two form field respectively and Aµ , µ = 0, 1 is worldvolume gauge field. Now the
equations of motion for XK derived from the action (2.3) take the form

∂K [τpe
−Φ]

√
− detA +

τpe
−Φ

2
[∂KgMN + ∂KbMN ] ∂µXM∂νXN

(

A−1
)νµ √

− detA −

−∂µ

[

τpe
−Φ

{

gKM∂νXM
(

A−1
)νµ

S
+ bKM∂νXM

(

A−1
)νµ

A

}√
− detA

]

= 0 ,

(2.6)

while the equation of motion for the gauge field Aν takes the form

∂µ

[

τpe
−Φ(2πα′)

(

A−1
)νµ

A

√
− detA

]

= 0 , (2.7)

where the symmetric and anti-symmetric part of the
(

A−1
)νµ

, respectively, are given by

(

A−1
)νµ

S
=

1

2

((

A−1
)νµ

+
(

A−1
)µν)

,
(

A−1
)νµ

A
=

1

2

((

A−1
)νµ −

(

A−1
)µν)

. (2.8)

Let us now consider the D1-brane that wraps θ1 direction and study its dynamics when all

the worldvolume modes depend on time only. More precisely, we fix the gauge as

θ1 = ξ1 , ξ0 = t = X0 (2.9)

and also take A0 = 0. Let us also presume that ρ = ρ(t). Then the matrix A is equal to

A00 = −L2 cosh2 ρ + L2ρ̇2 ,

A01 = −L2 sinh2 ρ + (2πα′)Ȧθ1 ,

A10 = L2 sinh2 ρ − (2πα′)Ȧθ1 ,

A11 = L2 sinh2 ρ ,

(2.10)

where ḟ = df
dt

. Consequently we get

detA = det g̃ + F2
tθ1

, (2.11)
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where

det g̃ = −L4 cosh2 ρ sinh2 ρ + L4 sinh2 ρρ̇2 ,Ftθ1 = −L2 sinh2 ρ + (2πα′)Ȧθ1 (2.12)

and also
(

A−1
)

=
1

detA

(

g̃θ1θ1 −Ftθ1

Ftθ1 g̃tt

)

(2.13)

Now the equation of motion for A gives

(2πα′)τ1Ftθ1

gs

√

− det g̃ −F2
tθ1

= −q ⇒ F2
tθ1

= − g2
sq

2 det g̃

g2
sq

2 + (2πα′)2τ2
1

. (2.14)

We must also check that the equation of motion (2.6) are obeyed for the ansatz (2.9). For

K = θ1 the equation (2.6) is trivially satisfied since now all the modes do not depend on

θ1. On the other hand the equation of motion for X0 gives

∂0

[

τ1

gs
gtt

(

A−1
)00

S

√
− detA

]

+ ∂0

[

τ1

gs
btθ1

(

A−1
)θ1t

A

√
− detA

]

= 0 (2.15)

and hence we obtain the conserved quantity

E

2π
=

−gttgθ1θ1

√

q2 + (2πα′)2τ2
1 g−2

s − qbtθ1

√
− det g̃

(2πα′)
√
− det g̃

(2.16)

using (2.14). Some comments regarding the definition of the conserved quantity E is in

order now. Here E means the conserved energy of the D1-brane that arises by simply

integrating over θ1 direction which implies (for homogeneous worldvolume fields) that E

is proportional to 2π. We have further included the factor e−Φ = e−Φ0 = 1
gs

, where gs is

the string coupling constant. This factor is important for the later comparison with the

D0-brane equations of motion which we derive in the next section.

Let us try to evaluate the energy on the solution [5]

cosh ρ cos t = C ,C > 0 . (2.17)

Firstly, we have

− det g̃ =
L4C2

cos4 t
(C2 − 1) . (2.18)

Then the expression for energy is

E

2π
= L2 sinh2 ρ





C

√

q2(2πα′)−2 + τ2
1 g−2

s + q
√

C2 − 1
√

C2 − 1



 . (2.19)

As we have determined above E has to be conserved, but on the other hand we see that it

depends explicitly on sinh ρ. So the only possibility for it to be conserved is that it has to

vanish. This occurs when

C

√

q2(2πα′)−2 + τ2
1 g−2

s +
q

(2πα′)

√

C2 − 1 = 0 (2.20)
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and this implies

q2 = −C2(2πα′)2
τ2
1

g2
s

. (2.21)

So we obtain the well known result that the dS2-brane corresponds to the unphysical

situation when the electric flux on its worldvolume is purely imaginary.

Let us now return to the equation of conserved energy and try to solve it explicitly.

Using the conserved energy given in (2.16) we get

ρ̇2 = −
cosh4 ρ sinh2 ρ(

L4τ2
0

g2
sα′

+ q2L4

α′2 )

(E − L2

α′ q sinh2 ρ)2
+ cosh2 ρ (2.22)

using

τ2
1 =

1

4π2α′
τ2
0 . (2.23)

The differential equation above can be solved explicitly, however it leads to the very

complicated result, which we don’t wish to present here. We will only briefly discuss the

properties of given solution when we presume that E, q are real and also ρ̇2 > 0. Then the

equation (2.22) implies following bound for ρ

−L4 cosh4 ρ sinh2 ρ(τ2
1 g−2

s + (2πα′)−2q2)

( E
2π

− q(2πα′)−1L2 sinh2 ρ)2
+ cosh2 ρ > 0 . (2.24)

Solving this inequality leads to the condition

sinh2 ρ ∈ (0, sinh2 ρ+) , (2.25)

where sinh2 ρ+ is a root of the quadratic equation given above. In other words, for real E

and q, we obtain motion in the finite interval and D1-brane cannot reach the boundary of

AdS3.

Instead of studying the properties of the classical trajectory of D1-brane in more detail

we rather turn our attention to the possibility of explaining these unphysical solutions with

imaginary electric flux in the T -dual set up.

3. T-dual background

On the other hand it was argued recently that such a configuration could be related to

T -dual situation where it could correspond to Dirichlet S-brane. To make this statement

more clear and precise, let us apply T -duality along θ1 direction. More precisely, the action

of T -duality along the symmetry direction θ1 maps the string frame metric to string frame

metric [20]

d2s̃ = α′

[

gµν − 1

gθ1θ1

(gµθ1gθ1ν − Bµθ1Bνθ1)

]

dxµdxν + 2
1

gθ1θ1

Bθ1µdθ1dxν +
1

gθ1θ1

dθ2
1 ,

B̃ =
α′

2
dxµ ∧ dxν

[

Bµν − 1

gθ1θ1

(gµθ1Bθ1ν + Bµθ1gθ1ν)

]

+
α′

gθ1θ1

gθ1µdθ1 ∧ dxµ ,

φ̃ = φ − 1

2
log gθ1θ1 . (3.1)

where we have included in the original components of the metric gµν and the anti-symmetric

tensor Bµν , the dimensionless factor L2

α′ .
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Now we are ready to perform the T-duality along θ1 directions. Recall that in our

convention θ1 is dimensionless and periodic with period 2π. In T-dual background we

rename θ1 as z that is still periodic with period 2π. Finally we write T-dual components

of the metric g and the anti-symmetric B with the factor α′. Then the metric components

of the dual background take the form (We denote the dual variable to θ1 as z)

g̃zz =
α′2

L2 sinh2 ρ
, g̃tt = −L2 , g̃tz = g̃zt = α′ , g̃ρρ = L2 (3.2)

while the other components of the metric remain unchanged. We also get new components

of the anti-symmetric B field

B̃zt = −L2 . (3.3)

Finally, we also obtain nonzero value of the dilaton in the form

φ̃ = φ0 −
1

2
ln gθ1θ1 = φ0 − ln

L√
α′

sinh ρ . (3.4)

Under T -duality the D1-brane that wraps the circle is mapped to the D0-brane that moves

around this circle. Recall that dynamics of the D0-brane is governed by the action

S = −τ0

∫

dτe−Φ
√
−A ,A = gMNẊM ẊN , (3.5)

where in the following we omit the tilde on g. The equations of motion for XM that follow

from the action (3.5) take the form

∂K

[

e−Φ
]√

−A− 1

2
e−Φ∂KgMN ẊMẊN 1√

−A
+

d

dτ

[

e−Φ gKMẊM

√
−A

]

= 0 . (3.6)

Now we fix the gauge that the worldvolume parameter τ is equal to t ≡ X0. Then A is

equal to

A = gtt + gρρρ̇
2 + 2gtzŻ + gzzŻ

2 (3.7)

and also the equation of motion for X0 = τ takes the form

d

dτ

[

e−Φ(g00 + gtzŻ)√
−A

]

= 0 (3.8)

that implies that the quantity in the bracket is conserved. As usual it is useful to make

use of the Hamiltonian formalism after fixing the gauge. To do this we observe that the

Lagrangian has the form

L = −
√

V −
∑

i

(fi(∂0Φi)2 + Bi∂0Φi) ≡ −4 , (3.9)

where V contain scalar potential for various fields Φi. The conjugate momentum Pi to Φi

takes the form

Pi =
δL

δ∂0Φi
=

2fi∂0Φ
i + Bi

24 , ∂0Φ
i =

1

2fi
(2Pi4− Bi) (3.10)
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so that the Hamiltonian is equal to

H =
∑

i

Pi∂0Φ
i − L =

2V +
∑ B2

i

2fi

24 −
∑

i

Bi

2fi
Pi

=

√

√

√

√

(

V +
∑

i

B2
i

4fi

)(

1 +
∑

i

P 2
i

fi

)

−
∑

i

BiPi

2fi
, (3.11)

where on the second line we have expressed the Hamiltonian as a function of canonical

variables Φi, Pi. Returning to the action (3.5) we obtain

V = −e−2Φτ2
0 gtt , fz = e−2Φτ2

0 gzz , fρ = e−2Φτ2
0 gρρ , Bz = 2e−2Φτ2

0 gzt

(3.12)

and hence the Hamiltonian is equal to

H =
1

√
gzz

√

(−gttgzz + g2
tz)

(

e−2Φτ2
0 +

1

gzz
P 2

z +
1

gρρ
P 2

ρ

)

− gzt

gzz
Pz . (3.13)

Firstly, since the Hamiltonian does not explicitly depend on Z it implies that Pz is constant

of motion

Ṗz = −δH

δZ
= 0 . (3.14)

On the other hand the equation of motion for ρ is

ρ̇ =
δH

δPρ
=

1

gzzgρρ
(−gttgzz + g2

tz)
Pρ

E + gzt

gzz
Pz

. (3.15)

As usual we simplify this equation using the fact that the Hamiltonian is conserved and

equal to energy E. Then we express from (3.13) Pρ as

P 2
ρ =

1

1 + sinh2 ρ

(

E +
L2

α′
Pz sinh2 ρ

)2

−
(

L4τ2
0

α′g2
s

sinh2 ρ +
L4

α′2
P 2

z sinh2 ρ

)

(3.16)

using the explicit metric components given above and also the fact that e−2Φ = 1
g2

s
sinh2 ρ.

Then we obtain

ρ̇2 = − cosh4 ρ sinh2 ρ

(E + L2

α′ Pz sinh2 ρ)2

(

L4τ2
0

α′g2
s

+
L4

α′2
P 2

z

)

+ cosh2 ρ . (3.17)

Now the equation (3.17) describes the dynamics of D0-brane in dual background. As we

expect this equation is the same as the equation that determines the dynamics of D1-brane

in the original background. In fact, we see that this has the same form as the equation (2.22)

if we identify

P 2
z = q2 . (3.18)

– 7 –
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Naively we can say that this is the correct quantization condition for the motion of a test

D0-brane along a compact direction of periodicity 2π. Of course there is an important issue

that the momentum is imaginary and hence the wave function of D0-brane is not periodic

in z variable3. We should rather claim that the momentum Pz is conserved with the value

given in (3.18).

We can also see that the energy is the same in both cases. Then it immediately follows

that the classical trajectory cosh ρ cos t = C which corresponds to imaginary Pz is again

unphysical while E is equal to zero. Note also that the equation of motion for z takes the

form

Ż =
δH

δPz
=

1

g2
zz

(−gttgzz + g2
tz)

Pz

E + gzt

gzz
Pz

− gzt

gzz
(3.19)

that for E = 0 , Pz = −q, reduces to

Ż = − gtt

gzz
=

L2

α′
. (3.20)

We see that the velocity vz is constant and it does not depend on the value of the charge

q. This result is a consequence of the fact that the energy E is zero for the trajectory

cosh ρ cos t = C as can be seen easily from the form of the equation (3.19). On the other

hand it is also clear that when E 6= 0 the motion along z direction will depend on Pz.

In summary, in the T -dual picture in case of ordinary D0-brane we once again obtain a

situation which is unphysical. Then, following [4] we can expect that in T -dual background

the object, that is obtained in the dual picture of the corresponding D1-brane will be a

S0-brane. To see this explicitly we perform in the next section the analysis of the time-

dependent tachyon condensation on unstable Dp-brane in general background. We argue

that there exists a singular time dependent tachyon solution which leads to the emergence

of S(p− 1)-brane that has imaginary charge with respect to NS-NS fields however has real

charge with respect to the Ramond-Ramond (RR) fields.

4. S(p-1)-brane in general background

This section is devoted to the study of the singular time dependent tachyon condensation

on the world volume of non-BPS Dp-brane that leads to the emergence of S(p-1)-brane.

Once again, we begin with the Dirac-Born-Infeld like tachyon effective action in general

background [21 – 24] 4

S = −
∫

dp+1ξe−ΦV (T )
√
− detA ,

Aµν = gMN∂µXM∂νX
N + bMN∂µXM∂νXN + Fµν + ∂µT∂νT , µ , ν = 0, . . . , p ,

Fµν = ∂µAν − ∂νAµ , (4.1)

3In any case, if one computes the squared norm of the tangent vector to the D0-brane trajectory, this

gives
“

−

L2 cosh4 ρ

P2
z

g2
s

sinh2 ρ

”

. Therefore if Pz is imaginary this corresponds to supernuminal signature.
4We will work in this section in units (2πα′) = 1.
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where Aµ , µ, ν = 0, . . . , p and XM,N ,M,N = 0, . . . , 9 are gauge and the transverse scalar

fields on the worldvolume of the non-BPS Dp-brane and T is the tachyon field. V (T ) is

the tachyon potential that is symmetric under T → −T has maximum at T = 0 equal to

the tension of a non-BPS Dp-brane τp and has its minimum at T = ±∞ where it vanishes.

We must also stress that there exists a Wess-Zumino term for non-BPS Dp-brane that

expresses the coupling of this Dp-brane to the Ramond-Ramond fields. [25 – 29] that is

expected to have the form

SWZ =

∫

Σ
V (T )dT ∧ CeF+B , (4.2)

where Σ denotes the worldvolume of non-BPS Dp-brane and C collects all RR n-form

gauge potentials (pulled back to brane worldvolume).

In what follows we closely follow the analysis performed in [30]. As usual we start

to solve the equations of motion for T,XM and Aµ. The equation of motion for tachyon

takes the form

− e−ΦV ′(T )
√
− detA + ∂µ

[

e−Φ∂νT
(

A−1
)νµ

S

√
− detA

]

+ JT = 0 , (4.3)

where JT = δ
δT

SWZ. For scalar modes we obtain

−δe−Φ

δXK
V
√
− detA −

− e−Φ

2
V

(

δgMN

δXK
∂µXM∂νXN +

δbMN

δXK
∂µXM∂νX

N

)

(

A−1
)νµ √− detA +

+ ∂µ

[

e−ΦV gKM∂νXM
(

A−1
)νµ

S

√
− detA

]

+

∂µ

[

e−ΦV bKM∂νXM
(

A−1
)νµ

A

√
− detA

]

+ JK = 0 ,

(4.4)

where JK = δ
δXK SWZ . Finally, the equations of motion for Aµ are given by

∂ν

[

e−ΦV
(

A−1
)µν

A

√
− detA

]

+ Jµ = 0 , (4.5)

where Jµ = δ
δAµ

SWZ . Now we try to find the solution of the equations of motion (4.3),

(4.4) and (4.5) that can be interpreted as a lower dimensional S(p-1)-brane. More precisely,

we can show that the dynamics of the kink is governed by the equations of motion that

arise from the action for S(p-1)-brane in general background

S = SS
DBI + SS

WZ ,

SS
DBI = −TS(p−1)

∫

dpξe−Φ
√

deta ,

SS
WZ = µS(p−1)

∑

n≥0

1

n!(2!)n(2p − 2n)!

∫

dpξεα1...αp(F̃)nα1...α2n
C̃α2n+1...αp , (4.6)
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where

aαβ = (gMN + bMN )∂αXM∂βXN + Fαβ ,

F̃αβ = Fαβ + bMN∂αXM∂βXN ,

C̃α2n+1...αp = CM2n+1...Mp∂α2n+1X
M2n+1 . . . ∂αpX

Mp (4.7)

and ξα, α = 1, . . . , p. Finally, TS(p−1) is S(p-1)-brane tension and µS(p−1) is the charge of

S(p-1)-brane with respect to Ramond-Ramond fields. These quantities will be determined

during the calculations.

In other words we will show that the modes given in (4.14) that propagate on the

worldvolume of the kink obey the equations of motion derived from (4.6) that have the

form

− TS(p−1)
δe−Φ

δXK

√
det a −

−TS(p−1)
e−Φ

2

(

δgMN

δXK
∂αXM∂βXN +

δbMN

δXK
∂αXM∂βXN

)

(a−1)βα
√

det a +

+TS(p−1)∂α

[

e−ΦgKM∂βXM (a−1)βα
S

√
det a

]

+

+TS(p−1)∂α

[

e−ΦbKM∂βXM (a−1)βα
A

√
deta

]

+ J̃K = 0 , (4.8)

where

J̃K =
δSWZ

δXK

= µS(p−1)

∑

n≥0

1

n!(2!)n(2p − 2n)!
εα1...αp

[

∂KbMN∂α1X
M∂α2X

N (F̃)n−1
α3...α2n

C̃α2n+1...αp

+(F̃)nα1...α2n
∂K C̃M1...M2p−2n

∂α2n+1X
M1 . . . ∂αpX

M2p−2n−

−2n∂α1

[

bKM∂α2X
M (F̃)n−1

α3...α2n
C̃α2n+1...αp

]

−

−(2p − 2n)∂α2n+1

[

(F̃)nα1...α2n
CKM2...M2p−2n

∂α2n+2X
M2 . . . ∂αpX

M2p−2n

]]

. (4.9)

In the same way we get that the equation of motion for Aα are

TS(p−1)∂β

[

e−Φ(a−1)αβ
A

√
− deta

]

+ J̃α = 0 , (4.10)

where

J̃α1 = µS(p−1)

∑

n≥0

2n

n!2n(2p − 2n)!
εα1...αp∂α2

[

(F̃)n−1
α3...α2n

C̃α2n+2...αp

]

. (4.11)

In what follows we will proceed in the same way as in [30] so we can be brief and recommend

the paper [30] for more details.

We begin with the presumption that the tachyon kink depends on the time coordinate

on the worldvolume of Dp-brane. We will also see that when we consider the singular limit

we obtain the formal solution that leads to the negative expression under square root. In

spite this fact we will argue that this singular solution describes S(p-1)-brane.
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More precisely, let us consider the following ansatz for tachyon [31]

T (x, ξ) = f(a(x − t(ξ)) , (4.12)

where x is time coordinate on the worldvolume of Dp-brane and where t is some unknown

function of the ξα , α = 1, . . . , p euclidean coordinates on the kink. We also presume as

in [31] that f(u) satisfies following properties

f(−u) = −f(u) , f ′(u) > 0 ,∀u , f(±∞) = ±∞ (4.13)

but is otherwise an arbitrary function of its argument u. a is a constant that we shall take

to ∞ in the end. In this limit we have T = ∞ for x > t(ξ) and T = −∞ for x < t(ξ). Let

us also presume following ansatz for the massless fields

XM (x, ξ) = XM (ξ) , Ax(x, ξ) = 0 , Aα(x, ξ) = Aα(ξ) , α = 1, . . . , p . (4.14)

With this ansatz the matrix Aµν takes the form

A =

(

a2f ′2 −a2f ′2∂βt

−a2f ′2∂αt aαβ + a2f ′2∂αt∂βt

)

, (4.15)

where

aαβ = (gMN + bMN )∂αXM∂βXN + Fαβ . (4.16)

Now using the fact that

detA = det

(

Aαβ − Aαx
1

Axx
Axβ

)

detAxx (4.17)

we get

detA = a2f ′2 deta . (4.18)

As a next step we determine the inverse matrix
(

A−1
)

. After some calculations we get the

result

(

A−1
)αβ

= (a−1)αβ
(

A−1
)xβ

= ∂αt(a−1)αβ ,
(

A−1
)αx

= (a−1)αβ∂βt ,
(

A−1
)xx

= ∂αt(a−1)αβ∂βt (4.19)

For next purposes following relation will be also useful

(

A−1
)µx

S
−

(

A−1
)µα

S
∂αt =

1

a2f ′2

(

δµ
x −

(

A−1
)xµ

S

)

. (4.20)

With the help of this expression we get

∂µ

[

e−ΦV ∂νT
(

A−1
)νµ

S

√
− detA

]

=V ′af ′e−Φ
√
− deta−V ∂α

[

e−Φ(a−1)βα
S ∂βt

√
− deta

]

,

(4.21)
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where we have used the fact that the only field that depends on x is a tachyon. Then the

DBI part 5 of the tachyon equation of motion (4.3) takes the form

∂α

[

V (f)e−Φ(a−1)βα
S ∂βt

√
− deta

]

= i∂α

[

V (f)e−Φ(a−1)βα
S ∂βt

√
det a

]

. (4.22)

Now we consider the DBI part of the equation of motion for XK (4.4). In the same way

as in [30] we can show the the DBI part of the equation of motion (4.4) takes the form

√
−1af ′V

(

−∂K [e−Φ]
√

deta − e−Φ

2
(gMN,K + bMN,K) ∂αXM∂βXN (a−1)αβ

√
deta

+∂β

[

e−ΦgKM∂αXM (a−1)αβ
S

√
deta

]

+ ∂β

[

e−ΦbKM∂αXM (a−1)βα
A

√
det a

])

.

(4.23)

Now let us consider the DBI part of the equation of motion for gauge field (4.5). For Ax

we get

∂ν

[

V e−Φ
(

A−1
)xν

A

√
− detA

]

=
√
−1af ′V ∂α

[

e−Φ(a−1)βα
A ∂βt

√
deta

]

. (4.24)

On the other hand the equations of motion for Aα take the form

∂µ

[

e−Φ
(

A−1
)αµ

A

√

− det (A−1)
]

=
√
−1af ′V ∂β

[

e−Φ(a−1)αβ
A

√
deta

]

. (4.25)

As a next step we evaluate the currents JT , JK and Jµ1 . for the ansatz (4.12) and

(4.14). It was shown in [30] following [32] that these currents take the form

Jµ1 =
∑

n≥0

2n

n!2n(2p − 2n)!
εµ1...µp+1∂µ2

[

V (T )(F)n−1
µ3 ...µ2n

Cµ2n+1...µp∂µp+1T
]

, (4.26)

JT =
∑

n≤0

1

n!(2!)n(2p − 2n)!
εµ1...µp+1V ′(T )

(

(F)nµ1...µ2n
Cµ2n+1...µp∂µp+1T

)

−

−∂µp+1

∑

n≤0

1

n!(2!)n(2p − 2n)!
εµ1...µp+1

[

V (T )(F)nµ1...µ2n
Cµ2n+1...µp

]

(4.27)

and

JK =
∑

n≤0

1

n!(2!)n(2p − 2n)!
εµ1...µp+1

×[V (T )bMN,K∂µ1X
M∂µ2X

N (F)n−1
µ3 ...µ2n

Cµ2n+1...µp∂µp+1T

+V (T )(F)nµ1...µ2n
∂KCM1...M2p−2n

∂µ2n+1X
M1 . . . ∂µpX

M2p−2n∂µp+1T −
−2∂µ1 [V (T )bKM∂µ2X

M (F)n−1
µ3 ...µ2n

Cµ2n+1...µp∂µp+1T ] − (4.28)

−(2p − 2n)∂2n+1[V (T )(F)nµ1...µ2n
CKM2...M2p−2n

∂µ2n+2X
M2 . . . ∂µpX

M2p−2n∂µp+1T ]] .

Let us start with JT that can be written as

JT = −
∑

n≤0

V (T )
1

n!(2!)n(2p − 2n)!
εµ1...µp+1∂µp+1

(

(F)nµ1 ...µ2n
Cµ2n+1...µp

)

. (4.29)

5”DBI” part of the equation of motion means the part that arises from the variation of the DBI action.
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As the first step we determine the components of the embedding of various fields. It can

be shown [30] that the only nonzero components of Fµν are Fαβ. For C(n) the situation

is the same, namely any component with x index is equal to zero. Then it can be easily

shown that the tachyon current is equal to zero [30].

Now we consider the gauge current Jµ. Firstly, it can be easily shown [30] that Jx is

equal to

Jx = −af ′V
∑

n≥0

2n

n!2n(2p − 2n)!
εxα1...αp∂α1

[

(F)n−1
α3...α2n

Cα2n+1...αp−1∂αpt
]

(4.30)

while Jα1 takes the form

Jα1 =
∑

n≥0

af ′V
2n

n!2n(2p − 2n)!
εα1α2...αpx∂α2

[

(F)n−1
µ3...µ2n

Cµ2n+1...µp

]

= af ′V J̃α1 , (4.31)

where we have introduced the notation J̃α1 that is a correct form of the gauge current for

S(p-1)-brane. If we now combine (4.25) with (4.31) we get

af ′V
[

i∂β

[

e−Φ(a−1)αβ
A

√
deta

]

+ J̃α
]

= 0 . (4.32)

Let us now analyze the behavior of the term af ′V in the limit a → ∞. Since by definition

f ′(u) is finite for all u it remains to study the properties of the expression aV . Since

V ∼ e−T for T → ∞ we have

lim
a→∞

aV (f(a(x − t(ξ)) = (for x 6= t(ξ))

lim
a→∞

a

ef(a(x−t(ξ)))
=

1

(x − t(ξ))f ′
lim

a→∞
e−f(a(x−t(ξ))) = 0 . (4.33)

We see that for x 6= t(ξ) the expression aV goes to zero in the limit a → ∞. On the

other hand for x = t(ξ) the potential V (0) = τp and hence in order to obey the equation

of motion for Aα we find that the expression in the bracket in (4.32) should vanish. In

fact, this expression is correct form of the equation of motion for Aα that propagate on the

worldvolume of S(p-1)-brane.

From (4.32) we can also deduce that the S(p-1)-brane tension and its charge with

respect to Ramond-Ramond fields are equal to

TS(p−1) = iTp−1 , µS(p−1) = µp−1 , (4.34)

where Tp−1 is tension of BPS D(p-1)-brane and µp−1 is its corresponding charge. Even if

the form of the equation (4.32) suggests that the tension of S(p-1)-brane can be arbitrary

we will give arguments for the validity of (4.34) in the next subsection.

Let us now turn to the equation of motion for Ax. It was shown in [30] that it has

solution in case when we demand that

∂αt = 0 . (4.35)
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The expression above also implies that the equation of motion for tachyon that for JT = 0

has the form

V ∂α

[√
−1e−Φ(a−1)βα

S ∂βt
√

deta
]

= 0 (4.36)

is obeyed.

Finally, we will consider the current JK . Again, as was shown in [30] that for the

ansatz (4.12) and (4.14) this current takes the form

JK = af ′V
∑

n≤0

1

n!(2!)n(2p − 2n)!
εα1...αpx

(

bMN,K∂α1X
M∂α2X

N (F)n−1
α3...α2n

Cα2n+1...αp

+(F)nα1...α2n
∂KCM1...M2p−2n

∂α2n+1X
M1 . . . ∂αpX

M2p−2n−
−2∂α1

[

bKM∂α2X
M (F)n−1

α3...α2n
Cα2n+1...αp

]

+

+(2p − 2n)∂α2n+1

[

(F)nα1...α2n
CKM2...M2p−2n

∂α2n+2X
M2 . . . ∂αpX

M2p−2n
])

≡ af ′V J̃K . (4.37)

Using (4.23) and (4.37) we obtain the final form of the equation of motion for XK in the

form

af ′V

(

−i∂K [e−Φ]
√

deta − i
e−Φ

2
(gMN,K + bMN,K) ∂αXM∂βXN (a−1)αβ

√
deta

+i∂β

[

e−Φ
{

gKM∂αXM (a−1)αβ
S + bKM∂αXM (a−1)βα

A

}√
deta

]

+ J̃K
)

= 0 . (4.38)

Following now a discussion given below (4.32) we see that the expression in the bracket

in (4.38) should be equal to zero. On the other hand this equation is exactly the equation

of motion for the embedding mode that lives on the worldvolume of S(p-1)-brane.

Let us briefly discuss the meaning of the condition ∂αt = 0. Following [30] we can argue

that all tachyon kink solutions are parameterized with the constant t that determines the

core of the kink and that all t are equivalent. This is natural result since we have not fixed

the gauge on the worldvolume of non-BPS Dp-brane.

4.1 Stress energy tensor

Further support for an interpretation of the tachyon kink as a lower dimensional S(p-

1)-brane can be derived from the analysis of the stress energy tensor for the non-BPS

Dp-brane. In order to find its form recall that we can write the action (4.1) as

Sp = −
∫

d10xd(p+1)ξδ(XM (ξ) − xM )e−ΦV (T )
√
− detA . (4.39)

From (4.39) we can easily determine components of the stress energy tensor TMN (x) of

an unstable D-brane using the fact that the stress energy tensor TMN (x) is defined as the

variation of Sp with respect to gMN (x)

TMN (x) = −2
δSp

√

−g(x)δgMN (x)
(4.40)

= −
∫

d(p+1)ξ
δ(XM (ξ) − xM)

√

−g(x)
e−ΦV gMKgNL∂µXK∂νXL(A−1)νµ

S

√
− detA .
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Now from (4.12) and (4.14) we know that all massless modes are x independent. Hence

(4.40) is equal to

TMN (x) = −
∫

dxaf ′V (f(x))

∫

dpξ
δ(XM (ξ) − xM )

√

−g(x)
×

×e−ΦgMKgNL∂αXK∂βXL(a−1)βα
S

√
− det a =

−iTp−1

∫

dpξ
δ(XM (ξ) − xM )

√

−g(x)
e−ΦgMKgNL∂αXK∂βXL(a−1)βα

S

√
deta , (4.41)

where

Tp−1 =

∫

dxaV (f)f ′ =

∫

dmV (m) (4.42)

is a tension of BPS D(p-1)-brane. In other words the stress energy tensor evaluated on the

ansatz (4.12) and (4.14) corresponds to the stress energy tensor for S(p-1)-brane. We also

see that it is natural to define the tension of S(p − 1)-brane as TS(p−1) = iTp−1.

In the same way we can calculate the charge to NS-NS two form fields. Again, since this

charge follows from the variation of the DBI part of the non-BPS Dp-brane effective action

we again get that this charge is imaginary. In conclusion, the effective field theory analysis

of the time dependent tachyon kink suggests that S(p-1)-brane has imaginary charge with

respect to NS-NS fields while is real to Ramond-Ramond fields.

5. S0-brane in the T-dual background

Now we would like to apply the general discussion given in previous section for S0-brane

in the dual background defined in section (3). Recall that S0-brane action has the form

S = −τ
S0

∫

dξe−Φ

√

gMNẊMẊN , (5.1)

where ξ is world line coordinate and XM are embedding coordinates of S0-brane. If we

vary the action (5.1) we obtain the equations of motion for XK in the form

∂K [e−Φ]

√

gMNẊM ẊN +
e−Φ∂KgMNẊMẊN

2

√

gMN ẊMẊN

− d

dξ





e−ΦgMN ẊN

√

gMNẊM ẊN



 = 0 . (5.2)

Since we presume that S0-brane wraps the z direction we choose the gauge

ξ = Z (5.3)

and hence

gMN ẊMẊN = gzz + 2gtz Ṫ + gttṪ
2 + gρρρ̇

2 , (5.4)

where X0 ≡ T , ˙(. . .) = d(...)
dξ

. For convenience we write again the background fields in

T-dual spacetime

gzz =
α′2

L2 sinh2 ρ
, gtt = −L2 , gtz = gzt = α′ , gρρ = L2 ,

bzt = −L2 , e−Φ =
L

gs

√
α′

sinh ρ .

(5.5)
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Then the action (5.1) takes the form

S = −τS0

∫

dze−Φ
√

gzz + 2gtz Ṫ + gttṪ 2 + gρρρ̇2 . (5.6)

Let us now try to find the ‘dynamics’ of S0-brane in T -dual background. Note that the

Lagrangian has the form

L = −
√

V +
∑

i

(fi(∂0Φi)2 + Bi∂0Φi) ≡ −4 , (5.7)

where V contain scalar potential for various fields Φi. Then in the same way as in the

section (3) we determine the corresponding Hamiltonian

H =

√

√

√

√

(

V −
∑

i

B2
i

4fi

)(

1 −
∑

i

P 2
i

fi

)

−
∑

i

BiPi

2fi
, (5.8)

where Pi is momentum conjugate to Φi. Now from (5.6) we have

V = τ2
S0e

−2Φgzz , fT = τ2
S0e

−2Φgtt , bT = 2τ2
S0e

−2Φgtz , fρ = τ2
S0e

−2Φgρρ (5.9)

and hence the Hamiltonian takes the form

H =

√

(

gzzgtt − g2
tz

gtt

)(

−P 2
T

gtt
−

P 2
ρ

gρρ
+ e−2Φτ2

S0

)

− gtz

gtt
PT . (5.10)

As usual the equation of motion for T that follows from (5.8) implies that PT = const. On

the other hand the equation of motion for ρ is equal to

dρ

dξ
=

δH

δPρ
=

(

g2
tz − gzzgtt

gtt

)

Pρ

gρρ

√

( . . .)
. (5.11)

If we again express Pρ from the Hamiltonian (5.8) and use the fact that it is conserved (In

a sense that dH
dz

= 0) we obtain

P 2
ρ = PT )2 + P 2

T +
L4τ2

S0

α′g2
s

sinh2 ρ . (5.12)

Using this expression the equation (5.11) is equal to

(

dρ

dξ

)2

=

(

g2
tz − gzzgtt

gtt

)2 P 2
ρ

g2
ρρ(E + gzt

gtt
PT )2

= −α′2

L4

cosh2 ρ

sinh2 ρ
+

α′4

L8

cosh4 ρ

sinh4 ρ(E − α′

L2 PT )2

(

P 2
T +

L4τ2
S0

α′g2
s

sinh2 ρ

)

(5.13)

using
g2
tz − gzzgtt

gttgρρ
= −α′2

L4

cosh2 ρ

sinh2 ρ
. (5.14)
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To compare the “dynamics” of S0-brane with the dynamics of D0-brane given in equa-

tion (3.17) we have to take into account the parametrization of ρ. Namely, in (3.17) ρ is

the function of t that was identified with X0 while in the equation (5.13) ρ is the function

of ξ that is identified with z. On the other hand we can certainly write

dρ

dξ
=

dρ

dT

dT

dξ
=

dρ

dT

δH

δPT
, (5.15)

where
dH

dPT
=

α′

L2

α′

L2 PT + E sinh2 ρ

sinh2 ρ(E − α′

L2 PT )
. (5.16)

If we combine (5.13), (5.15) and (5.16) we get

(

dρ

dT

)2

= cosh2 ρ − cosh4 ρ sinh2 ρ

[

L4

α′2 E2 − L4τ2
S0

α′g2
s

]

(PT + L2

α′ E sinh2 ρ)2
. (5.17)

However one can check that this is exactly the same differential equation for ρ as in case of

D0-brane given in (3.17) when we note that τ
S0

= iτ0. Let us now try to insert the solution

cosh ρ cos T = C into the equation (5.17). After some calculations we get

1 − 1

C2
=

sinh4 ρ
[

L4

α′2 E2 − L4τ2
S0

α′g2
s

]

(PT + L2

α′ E sinh2 ρ)2
. (5.18)

Since the left side is a constant it is clear that the only way how this equation is obeyed

is to demand that PT = 0. This is in complete agreement with the previous sections since

PT is canonical conjugate to X0. Then the equation above implies

E2 = C2 α′τ2
S0

g2
s

. (5.19)

From the point of view of S0-brane worldvolume theory this is perfectly consistent result

since now E is real. However from the point of view of original theory where τ
S0

= iτ0 we

obtain imaginary E which of course is expected since τS0 is imaginary.

It is also interesting to study the dependence of T on ξ. In fact, using (5.8) we obtain

dT

dξ
=

δH

δPT
=

g2
zt − gzzgtt

g2
tt

PT

E + gtz

gtt

− gtz

gtt
(5.20)

that for PT = 0 implies
dT

dξ
= −gtz

gtt
=

α′

L2
. (5.21)

We see that the S0-brane does not take the fixed position in time, rather the dependence

of T on ξ = z is in perfect agreement with the result (3.20).

On the other hand, if we insert (5.19) into (5.13) and use PT = 0 we obtain a differential

equation for ρ in the form

(

dρ

dξ

)2

=
α′2

L4

(

cosh4 ρ

C2 sinh2 ρ
− cosh2 ρ

sinh2 ρ

)

. (5.22)
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Even if this equation can be solved explicitly we restrict ourselves to the case when C = 1

in order to demonstrate the main properties of given solution. For C = 1 the equation

above reduces into
dρ

dξ
=

α′

L2
cosh ρ (5.23)

that has the solution

sinh ρ =

∣

∣

∣

∣

tan

(

α′

L2
ξ

)∣

∣

∣

∣

, (5.24)

where we have chosen the integration constant in such a way that for ξ = 0, ρ = 0. The

solution (5.24) describes S0-brane that many times wraps ξ = z direction before it reaches

its maximum value at ξmax = L2π
2α′ (Note that L2 À α′ in order to trust supergravity

solution.). Then it again spirals down until it reaches the point ρ = 0 at ξf = L2

α′ π.

6. Summary and conclusion

In this paper, we have studied the unphysical dS2-branes in the covering space of the

SL(2,R) WZW model, that is the AdS3 space time, supported by NS-NS three-form flux,

and observed in the T -dual set up, the emergence of the S-branes. We have been able to

present a physical interpretation of the unphysical solutions with imaginary electric flux

corresponding to dS2 branes. This becomes clear in the T-dual picture, in the form of

an S0-brane that arises from the time dependent tachyon condensation on an unstable

D1-brane. We have also been able to show that the previously found unphysical solutions

correspond, in fact, to perfect and acceptable solutions in string theory (even if the initial

configurations of tachyon that corresponds to S-brane have to be fine tuned) since they

arise from the singular, time dependent tachyon condensation. We have also shown that

these S-branes couple to imaginary NS-NS fields, but to real R-R fields, and hence in the

terminology of [4], correspond to S− branes. We further have analyzed the time depen-

dent tachyon condensation on non-BPS Dp-branes in general background and found out

a class of time dependent singular solutions which correspond to the S− branes. Argu-

ments in favor of this have also been given by studying the stress tensor, that revealed the

fact that indeed these S-branes couple to imaginary NS-NS fields, but to real R-R fields.

There are further directions of research that one can adopt. One of them is to analyze

the unphysical branes [15] in the Nappi-Witten model. The DBI action on the unphysical

branes in that background have been shown to be imaginary, and hence in the present

context, might correspond to some kind of Dirichlet S-branes. One can further analyze

the one loop partition function for the branes in the above backgrounds, and give inter-

pretations in the same spirit of [4]. We hope to come back to some of these issues in near

future.
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